Menofia University Faculty of Engineering Shebien El-kom Academic Year : 2014-2015 Department : Basic Eng. Sci.



Subject : Partial Differential Equations Time Allowed : 3 hours Date : 6/6/2015

Allowed Tables and Charts : None

# Answer all the following questions: [100 Marks]

### Question 1 [20 Marks]

# A) For the following statements, state true or false and why?

- 1. A differential equation involving derivatives with respect to a multiple independent variables is called an *ordinary differential equation* (ODE).
- 2. A differential equation involving partial derivatives with respect to more than one independent variable is called *partial differential* equations (PDE).
- 3. The lowest order derivative involved in a partial differential equation is called the order of the partial differential equation.
- 4. The degree of a partial differential equation is the degree of the highest derivative which occurs in it.
- 5. The partial differential equation (PDE) is called quasi linear PDE if the equation is nonlinear in the highest order derivative but nonlinear in other term.

### B) Explain each of the following:

- 1. Boundary conditions (give an example)
- 2. Initial conditions (give an example)
- 3. Quasi-linear Partial differential equation (give an example)
- 4. Initial value problem (give an example)
- 5. Boundary value problem (give an example)

### Question 2 [30 Marks]

Find the dependent variable of the heat equation of a thin rod

u(0,t) = 1,

$$\frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial x^2} + x e^{-t}, \qquad 0 < x < L, \qquad t > 0$$

With the boundary conditions:

$$u(L,t)=2$$

And initial conditions:

$$u(x,0) = f(x)$$

# Question 3 [30 Marks]

(A) For the Sturm Liouville boundary value problem, state true or false and discuss your answer.

- 1. All eigen values are real.
- 2. There exists an infinite number of the eigen values such that  $\lambda_1 < \lambda_2 < \lambda_3 < \lambda_1 < \dots < \lambda_n < \lambda_{n+1} < \dots$ .
- 3. Corresponding to each eigen value  $\lambda_n$ , there is an eigen function, denoted  $\varphi_n(x)$ .
- 4. Eigen functions are orthogonal with respect to weight function b

$$r(x) \int_{a} r(x) \varphi_{m}(x) \varphi_{n}(x) dx = 0 \quad \text{if} \quad m \neq n \Rightarrow \lambda_{n} \neq \lambda_{m}$$

5. Any eigen function has exactly (n-1) zeros for  $a \le x \le b$  without counting the end points.

(B) Solve the wave equation

| $\partial^2 u \rightarrow \partial^2 u$ |            |       |
|-----------------------------------------|------------|-------|
| $\frac{1}{2} = C^2 - \frac{1}{2}$ ,     | 0 < x < 1, | t > 0 |
| $\partial t^2 \qquad \partial x^2$      |            |       |
| boundary conditions:                    |            |       |

$$u(1,t) =$$

0

And initial conditions:

With the

$$u(x,0) = f(x), \qquad \frac{\partial u(x,0)}{\partial t} = g(x).$$

#### **Question 4 [20 Marks]**

Find u of the wave equation or (finite string of length L)

u(0,t) = 0,

$$\frac{\partial^2 u}{\partial t^2} = \alpha^2 \frac{\partial^2 u}{\partial x^2} + x, \qquad 0 < x < L, \qquad t > 0$$

With the boundary conditions:

u(0,t) = 0, u(L,t) = 1

And initial conditions:

$$u(x,0)=f(x),$$

 $\frac{\partial u(x,0)}{\partial t} = g(x)$ 

| This exam measures the following ILOs |                                 |    |                     |  |    |      |                     |      |      |  |
|---------------------------------------|---------------------------------|----|---------------------|--|----|------|---------------------|------|------|--|
| Question Number                       | Q1-a                            | Q4 |                     |  | Q2 | Q3-b |                     | Q1-b | Q3-a |  |
| Skills —                              |                                 |    |                     |  |    |      |                     |      |      |  |
|                                       | Knowledge &understanding skills |    | Intellectual Skills |  |    | Pro  | Professional Skills |      |      |  |

With our best wishes Associate Prof. Dr. Islam M. Eldesoky